Search results for "FREE PERTURBATION-THEORY"

showing 2 items of 2 documents

Energy-energy correlations in hadronic final states from Z0 decays

1990

We have studied the energy-energy angular correlations in hadronic final states from Z0 decay using the DELPHI detector at LEP. From a comparison with Monte Carlo calculations based on the exact second order QCD matrix element and string fragmentation we find that Λ(5)/MS = 104-20 +25 (stat.)-20 +25(syst.)-00 +30(theor.) MeV, which corresponds to αs(91 GeV) = 0.106± 0.003 (stat.)±0.003(syst.)-0.000 +0.003(theor.). The theoretical error stems from different choices for the renormalization scale of αs. In the Monte Carlo simulation the scale of αs as well as the fragmentation parameters have been optimized to described reasonably well all aspects of multihadron production.

Nuclear and High Energy PhysicsParticle physicsLUND MONTE-CARLO2ND ORDER QCDElectron–positron annihilationHadronMonte Carlo methodElementary particleSTRONG-COUPLING-CONSTANT; ELECTRON-POSITRON ANNIHILATION; LUND MONTE-CARLO; FREE PERTURBATION-THEORY; 2ND ORDER QCD; E+E-ANNIHILATION; QUANTUM CHROMODYNAMICS; ALPHA-S; FRAGMENTATION MODELS; JET FRAGMENTATIONFRAGMENTATION MODELS01 natural sciencesJET FRAGMENTATIONNuclear physicsParticle decay0103 physical sciencesSTRONG-COUPLING-CONSTANTALPHA-S010306 general physicsNuclear ExperimentELECTRON-POSITRON ANNIHILATIONQuantum chromodynamicsCoupling constantPhysicsQUANTUM CHROMODYNAMICSAnnihilation010308 nuclear & particles physicsE+E-ANNIHILATIONFREE PERTURBATION-THEORYPhysique des particules élémentairesFísica nuclearHigh Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

Tuning and test of fragmentation models based on identified particles and precision event shape data

1996

Event shape and charged particle inclusive distributions are measured using 750000 decays of the $Z$ to hadrons from the DELPHI detector at LEP. These precise data allow a decisive confrontation with models of the hadronization process. Improved tunings of the JETSET ARIADNE and HERWIG parton shower models and the JETSET matrix element model are obtained by fitting the models to these DELPHI data as well as to identified particle distributions from all LEP experiments. The description of the data distributions by the models is critically reviewed with special importance attributed to identified particles.

Particle physicsPhysics and Astronomy (miscellaneous)Electron–positron annihilationHadron01 natural sciencesPartícules (Física nuclear)CROSS-SECTIONSNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]BARYON PRODUCTIONMatrix element010306 general physicsParton showerPRODUCTION-RATESDELPHIELECTRON-POSITRON ANNIHILATIONQuantum chromodynamicsPhysicsQUANTUM CHROMODYNAMICS010308 nuclear & particles physicsDetectorHigh Energy Physics::PhenomenologyE+E-ANNIHILATIONLARGE ELECTRON POSITRON COLLIDERCharged particleFREE PERTURBATION-THEORYHadronizationELECTRON-POSITRON ANNIHILATION; FREE PERTURBATION-THEORY; HADRONIC Z(0) DECAYS; E+E-ANNIHILATION; QUANTUM CHROMODYNAMICS; ENERGY CORRELATIONS; BARYON PRODUCTION; PRODUCTION-RATES; CROSS-SECTIONS; NEUTRAL KAONSHADRONIC Z(0) DECAYSENERGY CORRELATIONSPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSFísica nuclearHigh Energy Physics::ExperimentNEUTRAL KAONSParticle Physics - Experiment
researchProduct